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For thin bodies (shells and plates) the three-dimensional equations of the
theory of elasticity are reduced to approximate two-dimensional ones. The
error committed in this procedure 1s usually estimated by comparing a given
approximation with the following one. The estimttes obtained in this way
are expressed in terms of a certain power of the relative thickness.

Such estimates for a plate were obtained by the symbolic method in paper
[1] and by the asymptotic method in paper [2].

The investigations carried out in [3 and 4], based on the first method,
have indicated that for certain boundary value problems there is no improve-
ment of accuracy as predicted by these estimates in passing from the Kirch-
hoff-Love approximation to the next following approximations, whereby the
contribution of the following approximations may be larger than from the
preceding ones, 1.e, this method may lead to a decrease of the error. In
the present study, with the example of the equations of the state of plane
stress, 1t 1is shown what the reason for thls decrease may be. For these
equations the estimate is effected by means of comparing the exact solutions
of a known class [5], which are obtained most simply by expanding the dis-
placement veclor into Legendre polynomials [6]. The application of such an
expansion to the deduction of approximate equations turns out to be useful
for several purposes (4 and T7].

The characteristic feature of the result obtained consists in that the
estimate 1s multiplied by the logarithm of the relative thickness which
strongly decreases the accuracy. The possibllity 1is not excluded that such
a factor, which grows with the decrease of thlckness, may occur 1in other
cases also, but it does not appear in the estimates obtained by comparing a
given and the following approximation because in these approximations the
form of the dependence on relative thickness is prescribed a priori.

1. Pundamental relations. We consider a plane plate of thickness 2n ,
bounded by a cylindrical surface, normal to the plate. The plane of Cartesian
coordinates x,, x, will be placed into the middle plane of the plate and
the dimensionless coordinates §, = z;/h (i = 1, 2, 3) are introduced.
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In coordinates £, the edge boundary will be designated by T , the line
of its intersection in the plane &,, £, by y , and the tree-dimensional
reglon, occupied by the plate, by Q . Assuming that the displacements are
small, as compared to the thickness of the plate, we write down the equations
of the theory of elasticity in the form

du;

1

gl
*+w 5gi+llAui= 0, 0 =3, (1.9)

Here ). and u are Lamé coefficients, {u,} 1s the displacement —ector,
and, as always, the summation conventlon over dummy indices is applicable.
It is not difficult to see that if the displacement vector {u,} is represen-
ted by the serles
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where P, (2) is the rth Legendre polynomial (P, =1, P, = z, P, = (3z2 — 1)/ 2),
then it will satisfy Equations (1.1) exactly if
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Here and in the sequel the tensor indices, indicated by Greek letters,
take on the values 1 and 2, and A, 1s the two-dimensional Laplace operator.
Further, the displacement vector determined by Equations (1.3) and (1.%)
satisfles the condition of vanishing boundary traction on the planes £,=11.

Equations (1.3), which have to be satisfied by the principal terms of the
expansion (1,2) of the displacement vector, represent the equations of the
lane state of stress, Using their solution, we may evaluate by Formulas
1.4) the quantities uy; and u,4 and, as will be shown, the error may be
estimated by these quantities.

For comparison it is natural to select an exact solution of the three-
dimensional equatioms of the theory of elasticity u,* with conditions on T,
not depending on ¢g,, and for vanishing either transverse component of dis-
placement u, , or transverse component of loading; thereby the loading is
absent on the planes &,= 1.

For definiteness we assume that on T the displacements are prescribed

ue* Ip = @g (§1-Es)s U |p =0 (1.5)
The cases for other boundary conditions are investigated analogously.

2, BRatimating the error. (1). The vector u,, approximate for problem
1.1),(1.5), is determined by the series (1.2) and the relations (1.3) and
1.%), and will be found from condition

Uy ly = Pg (Brs &) 2.1)

which, obviously, determines the vector uniquely.

Let us form the difference Ju; = u; — w;*. The difference satisfies the
three-dimensional equations of the theory of elasticity (1.1), the condition
of vanishing loadings on the planes &,= + 1 and the following conditions

on T A a0
eI = sl Pa & = 7555 (5, Po &9 @2

A
Bug|p = ug l¢P1 (B9 = —rFon 0, |, Py (B9

2) Let us consider first the bounded plate without openings. Its longitu-
dinal dimension 7 shall be assumed in 2ll directions to be of the same order and
very much larger than the thickness of the vlate 2h , i.e. (L/h) =A >1.

We extend the plate beyond T' to infinity and conserve the displacements 8.
on I' , determined by conditions (2.2). ‘“hese displacements will be smootfxly
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continued beyond T such that they vanish at a distance of order 1 from T
and satisfy the vanishing of the loading of the planes &g,= 1 .

The solution for &y, in Q will remain thereby the same, but over the
whole infinite plate the vector &y, will satisfy the nonhomogeneous equa-

tions au
1

368
O+ W GE +uAdu =g, 8= (2.3)

in which the body forces f, are different from zero only in anarrow zone J
adjoining T, whose transverse dimension is of the order of 1. From the con-~
dition that the displacements 8y, approach zero smoothly at a distance of
order 1 beyond I and from the form of their dependence on g, in T , it
follows that after differentiating them twlce with respect to g, their order
18 not changed. Therefore, considering (2.2) and (2.3) we obtain

a0,  3%0, 30,
= 0 putb 2.4
fi {max I:eo, a§¢ , 3§aa§5 , aguagpaEY:L} ( )
for the order g, .
Using Green's tensor for the infinite plate, we obtain from (2.3)

du; (P) = { 6 (P, Q) 1, (@) a9 (2.5)
D

Here p and ¢ are the points of the plate, whereby p 1is arbitrary
and ¢ 1is within the narrow zone D , in which the forces p, are different
from zero.

The components of Green's tensor &,,(P,¢)(see, for example, [5]) for
fixed x form the displacement vector at the point P , which satisfies the
condition of vanishing loading on the planes E£,= i+ 1 and the equilibrium
equations for unit body force applied at the point ¢ and directed along the
k-axis, Because of the point ¢ the components @&,, possess a suffilclentl
weak singularity (of the type L/p , where p 1s the dilstance from p to Q),
therefore @, are integrable, and the inequality of Cauchy-Buniakowskl may
be applied to (2.5). It gives

a 1 ] 8 1 t ]
| 8u; (P) |<(§ S cae, Qdg,)” (§ S (@)’ 2.6
k=1 k=1

For the tensor @,, in the case of the infinite plate consldered we could
supply an explicit expression [8], but there is no necessity for this,

Indeed, because the planes £,= + 1 are free of loading, the force
applied at the point ¢ , which generates ¢,,, is balanced by stresses on
an arbitrary surface surroundung the point @ . Let this be a right circu-
lar cylinder with its axis passing through ¢ . The length of 1its circum-
ference increases in proportion to p . Therefore the stresses acting on
its surface decrease inversely proportional to o .

If x =1, 2 , then the force concentrated at the point ¢ 1is directed
along the plate and 1s balanced by stresses O,5. In the expression for these
stresses only (,, 1s differentiated with respect to g, . Since differen-
tiation with respect to £y does not change the arder, Gy will decrease as o',
The remaining components of displacement in the expressions for T, are dif-
ferentiated along the plate, and because their length derivatives decrease
as p~', 1t follows that the quantities themselves increase as 1lnp . This
is in completé accord with the statement that when the concentrated force 1s
directed along the plate, the elastic field at infinity approaches the plane
state, for which the displacements increase logatithmically in the case of
concentrated loading, which 1s & well-known result.

For x = 3 the concentrated force is directed transversely to the plate,
and one can show analogously that in this case @,, will increase logarith-
mically, while G,, will decrease {(as p~!). Therefore for p - @

3

D G P, Q) =0 (In?p) 2.7
=1
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If we now take in (2.6) the point p = P* in the vicinity of the middle
of the plate, then, considering that the nondimensional extent of the plate
A = L/h 18 much larger than unity, we may use the estimate (2.7). Substi-
tuting this estimate in (2.6), the estimate (2.4) for g, and considering
that the transverse dimenslon of the region D is of the order of unity,
while its inplane dimension is of the order jJ , we obtain

9, 9% #0
du, (P*) = 0 {(A In A) max [eo, a—g:, " aog‘, T ag‘; aey],} @2.8)

This result is conserved also in the case when the loading is prscribed
along T, or when on one part of T the loading is given and on the other
the displacements, provided that the boundary conditions do not depend on &g,,

and at the corresponding parts of T either the transverse force or the
transverse displacement vanish,

Thus, 1f the solution of the problem of the plane state of stress is
known, then calculating on the contour the value 8, and all 1ts derivatives
up to the third order, we can estimate the error in the displacements of the
middle part of the plate using (2.8). We note that the estimate (2.8), being
a general one, may be strongly increased (for example, for the class of exact
solutions used), but it cannot be improved because for sclutions, correspond-

ing to the case f; (Q) = const -Gy (P, Q), it becomes exact when in (2.6) the
equality is reallzed.

3) Let us consider now the infinite plate with cutouts, Extending the
plate with the cutouts, and otherwise proceeding analogously as we described
above, we arrive to Formula (2.5) and to the inequality (2.6) in which D
must be interpreted as "0(1) in the vicinity" for all openings. Evaluating
the error &y, at the points p = p**, asituated at large distances from the
openings (A = (L / h) S>> 1), we obtain the estimate (2.8), in which A 1in front
of the logarilt should Be deleted, because now the dimensions of reglon D
do not depend on A . Again, this estimate cannot be improved, It follows
that the error 1n displacements, generally speaking, increases logarithmically
with distance from the cutouts.

The author is grateful to G.I. Barenblatt and 8.S. Grigorian for thelr
attention to this work and their valuable discussion, and also to A.L. Golden-
velser for his advice and useful comments made in reviewing this paper.
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