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For thin bodies (shells and plates) the three-dimensional equations of the 
theory of elasticity are reduced to approximate two-dimensional ones. The 
error committed in this procedure is usually estimated by comparing a given 
approximation with the following one. The estimates obtained In this way 
are expressed in terms of a certain power of the relative thickness. 

Such estimates for a plate were obtained by the symbolic method in paper 
Cl] and by the asymptotic method in paper [ 23. 

The Investigations carried out In [3 and 43, based on the first method, 
have Indicated that for certain boundary value problems there Is no lmprove- 
ment of accuracy as predicted by these estimates in passing from the Klrch- 
hoff-Love approximation to the next following approximations, whereby the 
contribution of the following approximations may be larger than from the 
preceding ones, I.e. this method may lead to a decrease of the error. In 
the present study, with the example of the equations of the state of plane 
stress, It Is shown what the reason for this decrease may be. For these 
equations the estimate is effected by means of comparing the exact solutions 
of a known class [5], which are obtained most-simply by expanding the dis- 
placement vector into Legendre polynomials CU. The application of such an 
expansion to the deduction of approximate equations turns out to be useful 
for several purposes [ 4 and 73 . 

The characteristic feature of the result obtained consists in that the 
estimate Is multiplied by the logarithm of the relative thickness which 
strongly decreases the accuracy. The possibility Is not excluded that such 
a factor, which grows with the decrease of thickness, may occur in other 
cases also, but It does not appear in the estimates obtained by comparing a 
given and the following approximation because in these approximations the 
form of the dependence on relative thickness Is prescribed a priori. 

1. _W ral&LoM , We consider a plane plate of thickness 2h , 
bounded by a cylindrical surface, normal to the plate. The plane of Cartesian 
coordinates X, , x, will be placed into the middle plane of the plate and 
the dimensionless coordinates Er = zi 1 h (i = i, 2, 3) are introduced. 
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In coordinates g 
of Its Intersection 

the edge boundary will be designated by r , the line 
h the plane !!,, ?i, by y , and the tree-dimensional 

region, occupied by the plate, by n . Assuming that the displacements are 
sma1;1, as compared to the thickness of the plate, we write down the equations 
of the theory of elasticity In the form 

Here A and p are Iam6 coefflclents, (IL,) Is the displacement -.-ector, 
and, as always, the surmnatlon convention over dummy Indices Is applicable. 
It Is not difficult to see that If the displacement vector [u,) Is represen- 
ted by the series 

ui = $ Uir (El* ES) pr (fJ (1.2) 
r=o 

where P, (2) is the rth Legendre polynomial (PO = 1, PI = z, P, = (39 - 1) / 2), 
then It will satisfy Equations (1.1) exactly If 

(IL* + p) 2+ pAnuao = 0, 
A4 

O. = $ , *__?k h -a++ (1.3) CL 
h = a0 

U”B=3(a+&)a& 
a 

*=-a+* 00, us0 = %a = UDll = 0 (1.4) 

Here and ln the sequel the tensor Indices, Indicated by Greek letters, 
take on the values 1 and 2, and A Is the two-dimensional Laplace operator. 
Further, the displacement vector determined by Equations (1.3) and (1.4) 
satisfies the condition of vanlshlng boundary traction on the planes &=fl. 

Eauatlons (1.X). which have to be satisfied by the Drincloal terms of the 
expa&on (1.2) 6i-the displacement vector, rep&sent the eqiaatlons of the 
plane state of stress. Using their solution, we may evaluate by Formulas 
11.4) the quantities +,I ana unp and, as will be shown, the error may be 
estimated by these quantities. 

For comparison It Is natural to select an exact solution of the three- 
dimensional equations of the theory of elasticity u,* with conditions on r, 
not depend- on fs, and for vanishing either transverse component of dls- 
placement us , or transverse component of loading; thereby the loading Is 
absent on the planes & - f 1. 

For definiteness we assume that on r the displacements are prescribed 

ua* Ir = ‘p, (L,.&*h Ua*Ir = 0 (1.5) 

The case8 for other boundary conditions are 

2. IrCWMag @ho l rroc. (1). The vector 
,(1.5), is determined by the series (1.2) 
, and will be found from condition 

investigated analogously. 

u, , approximate for problem 
and the relations (1.3) and 

(2.1) 

which, obviously, determines the vector uniquely. 

Let us form the difference a.,ui = ui - ui*. The difference satisfies the 
three-dimensional equations of the theory of elasticity (lil), the condition 
of vanishing loadings on the planes &= + 1 and the following conditions 
on r 

2) Let us consider fLrst the bounded plate without openings. Its longltu- 
dlr@l dimension z shall be assumed fn all directions to be of the same order and 
very much larger than the thickness of the olate 2h , I.e. (L/h) ==A > 1. 
We extend the plate beyond r to lnnilnityand conserve the displacements bt 
on r , determlned by conditions (2.2). ‘Ihese dl6placementr will be smoothly 
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continued beyond r such that they vanish at a distance of order 1 from r 
and satisfy the vanishing of the loading of the planes f3= f 1 . 

The solution for 6ui in R will remain thereby the same, but over the 
whole Infinite plate the vector 
tions 

bu, will satisfy the nonhomogeneous equa- 

aMI 
(A + IL) J& + WU, = ri, 6fJ = ti$ (2.3) 

in which the body forces A are different from zero only in anarrow zone D 
adjoining T, whose transverse dimension is of the order of 1. From the con- 
dition that the displacements bu, approach zero smoothly at a distance of 
order 1 beyond r and from the form of their dependence on <a In r , it 
follows that after differentiating them twice with res ect their order 
is not changed. Therefore, considering (2.2) and (2.3 P 

to c3 
we obtain 

1 [ ae, bee ri = 0 max eo, a~, , 
ah 

Q%p ’ a&&& y 3) 

for the order f L . 

Using Green’s tensor for the infinite plate, we obtain from (2.3) 

6% 0’) = 1 G, (J’, Q) fk (Q) dQQ (2.5) 
D 

Here p and 4 are the points of the plate, whereby p is arbitrary 
and Q Is within the narrow zone D , in which the forces yk are different 
from zero. 

The components of Oreen’s tensor G,,(P,U)(see, for example, C51) for 
fixed k form the displacement vector at the point p , which satisfies the 
condition of vanishing loading on the planes p = f 1 and the equilibrium 
equations for unit body force applied at the point Q’ and directed along the 
k-axis. Because of the point 4 the components G,, possess a sufficient1 
weak singularity (of the type l/p , where 
therefore G, z 

is the distance from p to Q I 
are Integrable, and the inequglity of Cauchy-Bunlakowski may 

, 

b? applied to (2.5). It gives 

I bu, (J-7 I G ( ; Gd Pv Q) ,,,)“I ( j ; 1,’ (Q) ~S-Jp)” w3) 
k=l k=l 

For the tensor G, t in the case of the Infinite plate considered we could 
supply an explicit expression [83, but there is no necessity for this. 

Indeed, because the planes &- * 1 are free of loading, the force 
applied at the point Q , which generates G,,, Is balanced by stresses on 
an arbitrary surface surroundung the point 4 . Let this be a right clrcu- 
lar cylinder with Its axis passing through 4 . The length of Its circum- 
ference increases In proportion to p . Therefore the stresses acting on 
Its surface decrease inversely proportional to p . 

If k = 1, 2 , then the force concentrated at the point 4 is directed 
along the plate and Is balanced by stresses u=s. In the expression for these 
stresses only Gak Is dlf’ferentlated with respect to & . Since dlfferen- 
tiatlon with respect to bs does not change the tier, & will decrease as p-l . 
The remaining components of displacement in the eltpresslons for flae are dif- 
feren_t?ated along the plate, and because their length derivatives decrease 
as it follows that the quantities themselves Increase as lnp . This 
fs & c&plet& achord with the statement that when the concentrated force Is 
directed along the plate, the elastic field at infinity approaches the Plane 
state, for which the displacements increase logatithmically in the case of 
concentrated loading, which Is a well-known result. 

For k . 3 the concentrated force Is directed transversely to the plate, 
and one cm show analogously that in this case GS will Increase logarith- 
mlcally, while C,, will degrease (as p-l ) . Theretore for p - 0 

x G; (P, Q) = 0 W P) (2.7) 
k=l 



If we now take in (2.6) the point p = p* In the vicinity of the middle 
of the plate, then, considering that the nondimensional extent of the plate 
A = L/h Is much larger than unity, we may use the estimate (2.7). Substi- 
tuting this estimate $n (2.6), the estimate (2.4) for 

p 
and considering 

that the transverse dimension of the region D Is of t e order of unity, 
while its lnplane dimension Is of the order h , we obtain 

This result Is conserved also In the case when the loading Is prscrlbed 
along r, or when on one part of r the loading la given and on the other 
the displacements, provided that the boundary conditions do not depend on ts, 
and at the corresponding parts of r either the transverse force or the 
transverse displacement vanish. 

Thus, if the solution of the problem of the plane state of stress Is 
known, then calculating on the contour the value B. and all Its derivatives 
up to the third order, we can estimate the error in the displacements of the 
middle part of the plate using (2.8). We note that the estimate (2.8), being 
a general one, may be strongly Increased (for example, for the class of exact 
solutions used), but.lt cannot be Improved because for solutions, correspond- 
lng to the case fk (Q) = ccnst.G,, (P, Q), It becomes exact when In (2.6) the 
equalit? Is realized. 

3) Let us consider now the infinite plate with cutouts. Extending the 
plate with the cutouts, and otherwise proceeding analogously as we described 
above, we arrive to Formula (2.5) and to the inequality (2.6) In which D 
muat be interpreted 8s “O(1) In the vicinity” for all openings. gvaluatlng 
the error but at the points p = p**, altuated at large distances from the 
openings (A = kl h) > I+, we obtain the estimate (2.8), In which A In front 
of the logarlt should e deleted, because now the dimensions of region D 
do not depend on A . Again, this estimate cannot be improved. It follows 
that the error In dlsplacements,generally speaking, Increases logarithmically 
with distance from the cutouts. 

The author Is grateful to 0.1. Barenblatt and S.S. Grlgorlan for their 
attention to this work and their valuable discussion, and also to A.L. Golden- 
velser for his advice and useful comments made ln revlewlng this paper. 
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